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Abstract

Striga hermonthica (Del.) Benth is a parasitic weed that is damaging major cereal crops

in sub-Saharan Africa (SSA). Although Striga is recognised as an agricultural scourge,

there is limited information available indicating the extent of its growth and spread as

impacted by the changing climate in Kenya. This study investigated the impact of cur-

rent climate conditions and projected future (2050) climate change on the infestation

of Striga hermonthica in the western Kenya region. Specifically, the study aimed to

predict Striga hermonthica habitat suitability in five counties in the western Kenya

region through using the maximum entropy (MaxEnt) model and bioclimatic, soil,

topographic and land use, and land cover (LULC) variables. Striga hermonthica geolo-

cations were collected and collated and ecological niche models were developed to

determine the habitat suitability. The results showed that approximately 1767 km2

(10% of the total study area) is currently highly suitable for Striga hermonthica occur-

rence. The future projections showed a range between 2106 km2 (19% of the total

study area) and 2712 km2 (53% of the total study area) at the minimum carbon

(RCP 2.6) and the maximum carbon emission scenarios (RCP 8.5) respectively. Eleva-

tion, annual precipitation, LULC, temperature seasonality and soil type were deter-

mined to be the most influential ecological predictor variables for Striga hermonthica

establishment. The study revealed the importance of using climate, soil, topographic

and LULC variables when evaluating agricultural production constraints such as Stri-

ga's prevalence. The methodology used in this study should be tested in other Striga

affected areas.

K E YWORD S

agriculture productivity, ecological niche models, food security, maize, maximum entropy, weed
infestation

1 | INTRODUCTION

Poverty reduction and food security continue to be the focal points

for policies on agriculture and rural development in sub-Saharan

Africa (SSA) (AGRA, 2017). Improving agricultural productivity has a

great potential for increasing food and nutrition security and

simultaneously reducing poverty levels in the region (Diao

et al., 2010). Studies have shown that in Africa, there is a large yield

gap between the potential optimal crop yield and the current attain-

able yield (van Ittersum et al., 2016). These yield gaps are caused by

biotic and abiotic factors and other multiple sub-optimal crop manage-

ment strategies like timing, spatial arrangement of crop establishment,
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fertiliser application, quality of seeds and crop variety. Some of the

major biotic and abiotic constraints, include climate change, crop dis-

eases, insect pests, and parasitic weeds like Striga. Striga is an obligate

root hemiparasitic plant from the family Orobanchaceae which

attaches to the root system of the host plants, creating a phytotoxic

effect (Bellis et al., 2021). The parasitic weed causes harm to the host

plant by siphoning water and nutrients, thus causing stunting, chloro-

sis, wilting and yield reduction (Spallek et al., 2013).

Striga infestation affects approximately 300 million people and

over 50 million hectares of smallholder farmlands in Africa, causing

approximately 20%–80% yield losses and often total crop failure

(AATF, 2006). However, these estimates are likely to be inaccurate

and the current extent of Striga infestation and magnitude of crop

losses is unknown. Globally, Striga is the most economically important

parasitic weed since it affects staple food crops including maize, millet,

sorghum, and rice (Muranaka et al., 2017). Over 35 different species

of Striga are documented, with approximately 80% of them occurring

in the tropical belt of Africa (Mohamed et al., 2001). The two Striga

species causing massive yield losses across Africa are Striga her-

monthica (Del.) Benth and Striga asiatica (L.) Kuntze. Striga hermonthica

has a higher prevalence in central, eastern, and western Africa, while

Striga asiatica is mostly prevalent in southern and central Africa

(Rodenburg et al., 2016). In Kenya, Striga hermonthica is widespread

and endemic in the western region, especially around the Lake

Victoria basin. The geographic extent and intensity of Striga are pro-

jected to increase as the suitable conditions for the parasitic weed's

growth are projected to expand with envisaged climatic changes

(Mudereri, Dube, et al., 2020). Despite the recognition of the problem

and projection, there is inadequate information available to monitor

and forecast its occurrence and distribution shift in the face of climate

change. Therefore, predicting future changes in distribution would

provide information needed for proactive planning for interventions

and control.

Introduced plant species tend to have high resilience and adaptability

to diverse climatic conditions, thus making them more competitive than

native co-occurring plants (Amare, 2016). The geographical distribution of

most weeds is largely influenced by climate, which determines the suc-

cessful invasion of new environments. Increased temperatures thus affect

the occurrence and distribution of parasitic weeds (Scott et al., 2020).

Striga seeds require a certain set of conditions to germinate, including

optimal soil moisture and temperature conditions, and signalling com-

pounds, which are exuded by the host roots (Jamil et al., 2011). Consider-

ing climate change, increase in Striga infestation will result in complicated

crop-weed biotic interactions that will necessitate urgent adaptive inter-

ventions (Mandumbu et al., 2017). Therefore, our hypothesis assumed

that climate change will play an important role in increasing the severity

and spread of Striga in the future.

Various interventions have been developed to curb the problem

of Striga infestation in SSA (Jamil et al., 2021). The implementation

and upscaling of Striga management strategies, however, require

knowledge on the spatial extent of Striga and its suitable niche sites.

The knowledge of the spatial distribution and intensity of Striga will

enable the farmers to determine where to apply the right integrated

Striga management (ISM) intervention to control the parasitic weeds.

This will in turn create resilient agro-ecological systems, creating a rip-

ple effect that will increase cereal crop yields and the income for

farmers, hence improving their livelihoods.

Studies have demonstrated that the spatial distribution of para-

sitic weeds can be predicted through ecological niche modelling

(ENM) approaches using environmental variables as proxies for the

prediction (Cotter et al., 2012; Sadda et al., 2021). The ENMs statisti-

cally correlate environmental variables with plant or other species

observations by assessing the spatial variabilities (Elith et al., 2011).

By using advanced ENM machine learning algorithms, such as maxi-

mum entropy (MaxEnt), the priority and buffer zones around high inci-

dence areas of Striga that require urgent control operations can be

identified over larger areas (Sadda et al., 2021). Predictive models of

Striga occurrence could complement the field efforts and produce

information that is more concise regarding areas that require priority

attention during interventions (Cotter et al., 2012). In the case of

Striga, it is possible that some areas might present suitable conditions,

but the infestation is not yet established. Therefore, some of the suit-

able localities that are identified by the ENMs could represent areas

where Striga is already occurring or could occur in the future.

There are several studies that have specifically used ENM tools to

predict and map Striga infestation and suitable habitats in Africa (Cotter

et al., 2012; Sadda et al., 2021). However, none of the studies has utilised

ENMs to predict the spatial distribution and suitability of Striga

hermonthica in Kenya. Nevertheless, previous studies have used ground-

based (Mudereri, Dube, et al., 2020) and satellite-based (Mudereri, Abdel-

Rahman, et al., 2021) remotely sensed data to detect the spectral features

of Striga hermonthica only, as Striga asiatica is not detectable owing to its

height, which is shorter than the host canopy. Although these studies

accurately mapped Striga in agro-ecology systems, detection of the Striga

spectral signature was challenging, particularly as the parasitic weed is

attached to the host plant. Furthermore, for accurate Striga spectral signa-

ture detection, the exercise should be conducted during its flowering

stage when it is visible. This is at a late stage for managing Striga during

the cropping season; hence, a decision-support system is needed that

uses geospatial modelling approaches like MaxEnt to inform the farmers

about the suitable habitats for the parasitic weed.

The aim of the present study was, therefore, to predict Striga her-

monthica habitat suitability in western Kenya region through using

MaxEnt model and bioclimatic, land use/land cover (LULC), and soil

variables. The landscape structure provided by the LULC affords valu-

able information for predicting the habitat suitability of species, as

often the host crops are among the main classes in LULC layers

(Mudereri, Kimathi, et al., 2021).

2 | MATERIALS AND METHODS

2.1 | Study area

The study was conducted in five counties in the western region

of Kenya (Figure 1) where Striga infestation is prevalent

2 KIMATHI ET AL.
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namely: Migori, Homabay, Kisumu, Vihiga and Siaya (Midega

et al., 2017). The counties cut across four agro-ecological zones:

humid, sub-humid, semi-humid and semi-arid. The average annual

rainfall received in western Kenya region ranges between 900 mm

and 1988 mm with an annual mean temperature of 24.3–31.7�C

(Fick & Hijmans, 2017). The region experiences a bimodal rainfall

pattern where it receives long rains between the months of March

to May and short rains from October to December (Mugalavai

et al., 2008). The region's agro-natural ecology is dominated by dis-

persed savanna grasslands in combination with deciduous and exotic

forest, with subsistence and small-scale farming being the primary

agricultural activity. Maize (Zea mays) is the major staple and cash

crop in the region. It is grown in two seasons (March to August and

September to January) of each year. Other crops grown include

beans (Phaseolus vulgaris), groundnuts (Arachis hypogaea), green

gram (Vigna radiata), cassava (Manihot esculenta), mango (Mangifera

indica), banana (Musa acuminata), avocado (Persea americana), paw-

paw (Asimina triloba), and indigenous vegetables.

2.2 | Striga occurrence data

A field survey was conducted in the five study counties to collect

Striga hermonthica occurrence data between December 2018 and

January 2019. A purposive sampling approach was adopted during

the field survey to target 160 maize fields infested with Striga her-

monthica in the study area (Figure 1). The Striga hermonthica occur-

rence observations were collected during the flowering season for

easier visualisation of the parasitic weed in the maize croplands. A

global positioning system (GPS) of ≤ ± 3 m accuracy was used to geo-

tag the maize sampled fields. The sampled fields were spaced at a

minimum distance of 1–3 km to ensure a good spatial distribution. In

addition, 1000 Striga hermonthica infested fields were sourced from

the international centre of insect physiology and ecology (icipe) data-

base (Midega et al., 2017) as secondary Striga occurrence data for

evaluating our model's performance. In this regard, a total of 1160

Striga hermonthica georeferenced records were used in the present

study (Figure 1).

F IGURE 1 Spatial distribution of occurrence records of Striga in western Kenya overlaid on the four agro-ecological zones sourced from the
United Nations Environmental Programme (UNEP) (https://www.unep.org). The insets indicate the position of the study region in Kenya and the
globe. The map was generated using QGIS 3.3 software.
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2.3 | Predictor variables

The climatic, edaphic, topographic, and LULC variables used to predict

the habitat suitability of Striga hermonthica are summarised in

Supplementary S1. These climatic, edaphic, and topographic variables

were considered for the modelling experiment with previous knowl-

edge of their influence on the habitat suitability of the Striga species

(Scott et al., 2020). The LULC variable was included to provide infor-

mation on the distribution of Striga, and host crops within the crop-

land class. The predictor variables were all pre-processed and

resampled to a spatial resolution of 250 m to harmonise them to the

same spatial resolution. Hence, the Striga habitat suitability was pre-

dicted as a probability of occurrence within each 250 � 250 m

grid cell.

2.3.1 | Climate variables

Climatic variables were sourced from the worldclim global climate

data repository (https://worldclim.org) for both current and future

(2050) climate scenarios (Supplementary S1). The expected future

changes for these climatic variables were projected by using down-

scaled data, averaged for the climate scenarios for years 2041–

2060. Specifically, this study used 2.6 and 8.5 representative

concentration pathways (RCP) that were developed during the

Intergovernmental Panel on Climate Change (IPCC) 5th Assess-

ment Report (IPCC, 2014). The 2.6 RCP represents a conservative

pathway that projects a decline in carbon dioxide (CO2) emissions

at an approximate rate of 2 Gigatons of CO2 per year, which will

keep the global rise in temperatures below 2�C by 2100 (van

Vuuren et al., 2011). On the other hand, the 8.5 RCP represents

the worst-case climate scenario, where the CO2 emissions are pro-

jected to steadily rise to a radiative forcing of 8.5 W/m2, causing

the global temperatures to rise above 2�C (Riahi et al., 2011). In

general, these pathways were estimated through using the global

circulation model (GCM), but for this study the Hadley Centre

Global Environment Model Version 2 (HadGEM2-ES) was selected

because of its good performance in simulating precipitation and

temperature patterns on the African continent (Dike et al., 2015).

2.3.2 | Edaphic variables

Five soil variables, namely sand content, soil organic carbon content,

soil nitrogen, soil pH and soil types were sourced from the Interna-

tional Soil Reference and Information Centre (ISRIC) data hub

(https://data.isric.org). The dataset consisted of gridded data devel-

oped using 28 000 soil ground observations at six soil depth intervals

in combination with many covariates to develop prediction models of

various soil properties (Hengl et al., 2017). The data are provided at a

spatial resolution of 250 m in Africa. These soil parameters were

selected for use in this study because they are key in revealing soil

fertility, water retention capacity, and texture. Studies have shown

that low soil fertility can result in high Striga infestation rates (Bellis

et al., 2020).

2.3.3 | Land use and land cover (LULC) and digital
elevation model (DEM)

In addition to the climatic and soil variables, the study also utilised

20-m LULC prototype data that were developed by the European

Space Agency (https://www.esa-landcover-cci.org/). Moreover, a digi-

tal elevation model (DEM) was sourced from shuttle radar topographic

mission (SRTM) data (https://www.usgs.gov) at a resolution of 30 m.

LULC and terrain were anticipated to influence the infestation levels

of Striga as reported by other studies (Mudereri, Abdel-Rahman,

et al., 2020).

2.4 | Collinearity test and variable selection

Usually, the 19 Worldclim climatic variables are highly correlated,

meaning that they are mostly redundant. Therefore, it is recom-

mended that a collinearity test should always be performed to explore

the collinearity among the predictor variables (Sheppard, 2013). In this

regard, a Pearson correlation test was performed to determine the

less correlated predictors that would be suitable for model develop-

ment for predicting Striga habitat suitability. The ‘virtual species’
package (Leroy et al., 2016) in R software (R Core Team, 2020) was

used to analyse the correlation among the variables listed in

Supplementary (S1). A cluster tree that shows the degree of collinear-

ity among the predictor variables (Leroy et al., 2016) was produced

(Figure 2). A correlation coefficient of jrj > 0.7 (Dormann et al., 2013)

was set as a collinearity indicator. In addition to the evaluation of cor-

relation coefficient, knowledge informed variable selection was also

applied to select the predictor variables to improve the robustness of

the developed MaxEnt model.

The correlation analysis selected nine bioclimatic variables out of

the 19 variables. In total, 16 predictor variables, comprising nine bio-

climatic variables (Bio1, Bio2, Bio3, Bio4, Bio5, Bio12, Bio15, Bio17

and Bio18), five soil parameters (soil type, soil pH, sand content, soil

nitrogen and soil organic content), one DEM and one LULC were uti-

lised for predicting Striga habitat suitability.

2.5 | Maximum entropy (MaxEnt) model
development and parameter settings

Striga hermonthica occurrence data were utilised together with the

16 selected predictor variables to develop predictive models for Striga

habitat suitability in western Kenya. The modelling experiment was con-

ducted by using the MaxEnt algorithm, a machine learning technique,

which utilises the principle of maximum entropy to estimate the distribu-

tion or probability of species occurrence (Elith et al., 2011). The MaxEnt

model incorporates environmental variables and georeferenced presence

4 KIMATHI ET AL.
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only occurrence data to develop a model that highlights the habitat suit-

ability where each pixel in the study geographic space represents a proba-

bility value of suitability (Phillips et al., 2017). The model was trained

using 70% (n = 128) of the presence of Striga hermonthica data, while

30% (n = 32) of the data were used for assessing the performance of the

model. The ‘ENMeval’ tool (Muscarella et al., 2014) in R software was

used to optimise the parameters for calibrating the MaxEnt model. The

tool provides several evaluation metrics that guide in the selection of

optimal settings that create a balance between goodness of fit and model

complexity.

More specifically, linear, quadratic and hinge features were used

with a regularisation multiplier of three to fit the MaxEnt model. To

control overfitting, the models were replicated five times by using the

cross-validation strategy and an ensemble of the five replicates was

used to average the final model outputs. The model outputs, which

are Striga hermonthica suitability scores ranging from 0 (very low) to

1 (optimal), were mapped out through using the QGIS 3.10.9 software

(QGIS Development Team, 2019). The Striga hermonthica suitability

index for each model was classified into five classes: very low (0–0.1),

low (0.2–0.3), moderate (0.4–0.5), high (0.6–0.7), and very high (0.8–1)

following Mudereri, Kimathi, et al. (2021). The contribution of each pre-

dictor variable to the Striga hermonthica habitat suitability model was

assessed by using the response curves and jack-knife methods.

Response curves indicate the influence of each of the predictor vari-

ables on the Striga habitat suitability predictive models. The curves high-

light the relationship between the logistic probability of species

presence and predictor variables, creating a better understanding of the

ecological niche of the weed. The Jack-knife test of variable importance

on the other hand, highlights the gain in the model of individual predic-

tor variables when used in isolation (Phillips et al., 2017).

2.6 | Maximum entropy (MaxEnt) model validation
and evaluation

The performance of the Striga hermonthica habitat suitability model

was evaluated through using the area under the curve (AUC) of the

F IGURE 2 Cluster tree indicating the groups of intercorrelated
predictor variables. Lower-level lines (towards zero) show high levels
of correlation while levels closer to one show low correlation.

F IGURE 3 Relative contribution and importance of predictor variables used in the maximum entropy (MaxEnt) modelling experiment for
predicting Striga hermonthica habitat suitability in western Kenya as measured by (A) relative contributions for each environmental variable and
(B) Jack-knife test of regularised training.

KIMATHI ET AL. 5
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receiver operating characteristic curve (ROC). The AUC indicates

the balance between the specificity and sensitivity with values

ranging from 0 to 1. The AUC values of >0.5 indicate good perfor-

mance while values close to 0 indicate poor model performance

(Metz, 2006). Additionally, descriptive statistical analysis was used

to evaluate the performance of the Striga hermonthica predictive

model. The 1000 independent set of georeferenced records of

Striga hermonthica infested farms were overlaid on the MaxEnt

model output maps to extract Striga habitat suitability scores for

model evaluation at the study area level. Specifically, histograms

and normal distribution curves were fitted on the extracted Striga

hermonthica suitability scores to explore the model's performance.

Then, the mean, standard deviation and skewness were calculated

from the extracted Striga hermonthica suitability scores to test the

model's accuracy.

3 | RESULTS

3.1 | Contribution of the predictor environmental
variables on the maximum entropy (MaxEnt) model
performance

The results depicted in Figure 3A show that elevation has the highest

percentage contribution to the model. The jack-knife test (Figure 3B)

showed that Bio1 (annual mean temperature), Bio12 (annual precipita-

tion) and elevation had the highest gain in the MaxEnt model when

used in isolation. These variables therefore provided valuable informa-

tion on the distribution of Striga hermonthica in western Kenya.

Figure 4 indicates the responses of the six most important predic-

tor variables in predicting Striga hermonthica occurrence as assessed

using the MaxEnt model. The suitable elevation for Striga hermonthica

F IGURE 4 Response curves derived from the maximum entropy (MaxEnt) model.

6 KIMATHI ET AL.
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suitability ranged from 1000 to 1400 m above sea level. After

1400 m, a sharp decline in Striga hermonthica suitability was observed

(Figure 4A). The annual mean temperature ranged between 33�C and

34�C (Figure 4B). Figure 4C indicates that the optimal annual precipi-

tation range was 1500–2000 mm. The response curves also demon-

strated that the suitable LULC for Striga hermonthica was cropland

(Figure 4E). Moreover, the model predicted that Striga hermonthica

thrives in a range of soil types including Eutric planosols, Haplic nito-

sols, Haplic acrisols, Haplic phaezoems, and Luvic phaeozems

(Figure 4F). The optimum range for soil organic content was between

3 and 5 g/kg (Figure 4D).

3.2 | Maximum entropy (MaxEnt) model
performance evaluation

The MaxEnt predictive models, which estimated the habitat suitability

of Striga hermonthica in western Kenya under current and future cli-

mate projections, performed highly accurately, as indicated by an

average AUC value of 0.8 (Figure 5).

Figure 6 shows the validation of the Striga hermonthica predic-

tive models using independent presence records that were not used

during the MaxEnt model development. The results from the

descriptive statistical metrics indicated that the model had a habitat

suitability mean of 0.63 and a skewness of �1.13. The variance was

lower than the mean indicating a negatively skewed habitat suitabil-

ity distribution. This indicates that the majority of Striga hermonthica

habitat suitability scores in western Kenya ranged between 0.7 and

1, which shows that our MaxEnt model predicted high and very high

Striga suitability scores for current known areas of Striga occurrence

(Figure 6). This demonstrates the high performance of the MaxEnt

models in predicting the habitat suitability of Striga in western

Kenya.

3.3 | Striga habitat suitability under current and
future climate scenarios

Figure 7 shows the Striga hermonthica predicted suitability levels

across the five study counties under the current and future climate

scenarios. The warm colours (red scale) indicate regions with high

habitat suitability of Striga. The results showed that the eastern

part of Siaya, northern Kisumu, the south and eastern part of

Homabay, and vast areas of Vihiga and Migori county provide con-

ducive environmental conditions for the development and spread

of Striga hermonthica (Figure 7). In western Kenya, 19 sub-counties

are shown to have a very high habitat suitability of Striga her-

monthica in the study site. The projected future scenarios indicate

that there will be an increase in Striga hermonthica occurrence

across all five counties. The maps indicate that there will likely be

an increase in the spatial coverage of the regions suitable for Striga,

compared with the distribution maps of the current climatic

conditions (Figure 7A) with 2.6 climate scenario (Figure 7B) and 8.5

climate scenarios (Figure 7C).

Table 1 shows the relative changes in area (km2) and area per-

centage in suitability for Striga hermonthica in comparison with the

total area. The positive values for percentage change indicate

increases in the area covered while the negative values indicate

decreases in area for the respective suitability level. Currently, an area

of 1767 km2 (10% of the total area) is highly suitable for Striga her-

monthica occurrence (Table 1), but future projections show a range

between 2106 km2 (19% of the total area) and 2712 km2 (53% of the

F IGURE 5 Area under curve (AUC) of maximum entropy
(MaxEnt) models for evaluating the performance of predicting Striga
hermonthica habitat suitability in western Kenya. The mean plot of the
replicated models is shown in red, while the standard deviation of the
replicated models is shown in blue, and the predictions made at
random are shown in black.

F IGURE 6 Histogram and normal distribution fit for Striga
hermonthica habitat suitability scores extracted using 1000 known
Striga occurrence points in western Kenya. The red line shows the
normal distribution curve.
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total area) suitable for Striga hermonthica at the minimum carbon (RCP

2.6) and the maximum carbon emission scenarios (RCP 8.5) respec-

tively. Furthermore, the results indicated that regions that have a very

low probability under the current scenario will decrease by 13% and

23% at the RCP 2.6 and RCP 8.5 future climate scenarios

respectively.

F IGURE 7 Predictions of Striga hermonthica habitat suitability based on (A) current climatic conditions and (B and C) future climate change in
2050 at two global warming scenarios RCP 2.6 and RCP 8.5 respectively. The lake layer was sourced from https://data.humdata.org.
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4 | DISCUSSION

This study presents maps of the potential distributions of Striga her-

monthica in the western Kenya region using ENM. Specifically, the

MaxEnt model was successful in predicting suitable habitat sites for

Striga hermonthica under the current climate conditions, which indi-

cates good predictive power for the future climate scenarios used.

The high AUC (>0.8) of the MaxEnt model showed that the model

performance was highly accurate (Phillips et al., 2017), proving its

dependability in understanding the occurrence risks of Striga her-

monthica in western Kenya. The MaxEnt model outputs were robust,

as indicated by the level of optimization attained through the

knowledge-informed variable selection and model calibration. There-

fore, the model outputs obtained were considered reliable in under-

standing and monitoring Striga hermonthica occurrence and risk in the

western Kenya region.

The MaxEnt predictive model illustrated that Striga hermonthica

has a potentially broad distribution in western Kenya and will con-

tinue to extend its ecological suitability range in the future. The model

estimated that Striga hermonthica suitability will increase by 19% in

the conservative climate scenario (RCP 2.6) and by 53% under the

business as usual climate change scenario (RCP 8.5). This indicates

that there will be a substantial increase in Striga hermonthica suitable

habitats by 2050. Furthermore, the results indicated that climate

change will have a direct impact on the spread of Striga hermonthica in

western Kenya. This finding is supported by various studies

(Mandumbu et al., 2017; Midega et al., 2015; Mudereri, Dube,

et al., 2020) which noted that Striga habitat range will increase under

the changing climate. Some of the areas predicted in this study to

have suitable conditions for Striga invasion may not have been

invaded yet. Therefore, such areas indicate suitable localities where

Striga is already occurring or potentially suitable areas where Striga

could occur in the future.

Of the 34 sub-counties in the five study counties, 19 were pre-

dicted to have high risk of Striga distribution under the current condi-

tions. In particular, most of the counties bordering Lake Victoria were

predicted to have low (0–0.4) risks of Striga spread. This could be

attributable to the low precipitation (annual rainfall <1000 mm)

received in the counties neighbouring the Lake Victoria region that

are characterised by the dry conditions. Moreover, these conditions

are not conducive for maize crop production per se, which is one of

the main host plant for Striga (Khan, Pickett, et al., 2006). This is also

reflected in the maize yields records of 2018 collected by the Kenyan

Ministry of Agriculture (http://kilimodata.developlocal.org/) where

sub-counties, such as Bondo, Nyando, Mbita, Suba, Ugunja Kisumu

East, Rarienda Nyakach and Muhoroni, produced less than 1000 tons

of maize. Other potential host plants for Striga in the region include

Sorghum (Sorghum bicolor), upland rice (Oryza sativa) and pearl millet

(Pennisetum glaucum).

In general, relevant climatic and edaphic factors considered suit-

able for the species of interest could make ENM more robust and reli-

able (Kimathi et al., 2020). This study shows that annual temperature,

precipitation, and elevation played a key role in defining the suitable

habitat for Striga hermonthica. Elevation was anticipated to influence

the occurrence and spread of Striga by indirectly influencing variables

such as precipitation, temperature, and vegetation including crops, as

well as the angle, direction, and intensity of the sun's radiation on the

earth's surface. It is interesting to note that the MaxEnt model

response curves highlighted the fact that Striga hermonthica thrives in

areas with high temperatures of up to 34�C and heavy precipitation

of up to 2000 mm in a year. Previous studies have demonstrated that

Striga is highly affected by temperature and precipitation (Kristian &

Bärbel, 2014; Ramesh et al., 2017). A study by Bellis et al. (2020) indi-

cated that suitable habitats of Striga hermonthica were predicted to be

high in locations with mean annual precipitation of �500 to

1300 mm, which coincides with our results. Likewise, a study by Man-

dumbu et al. (2017) reported that alternating wet seasons and rising

temperatures in degraded soils could accelerate the rate of Striga

germination.

These findings, therefore, highlight the important role that climate

can play as a potential, direct driver that causes an increase in the

severity and spread of Striga. On the other hand, our results illustrated

that soil variables were similarly important for predicting Striga her-

monthica distribution and suitable habitats. Striga thrives in a variety

of soil types, especially degraded soils containing low organic content

(Khan, Midega, et al., 2006). Moreover, our modelling experiment

revealed that the high suitability of Striga hermonthica was predicted

in cropland areas. This reinforces the fact that Striga is highly depen-

dent on suitable host plants, which are mainly maize and sorghum in

western Kenya region (Muranaka et al., 2017).

TABLE 1 Area (km2) covered by Striga hermonthica per suitability levels for the current and future global warming (RCP 2.6 and RCP 8.5)
scenarios in the study area. ‘Change’ describes the shift in Striga hermonthica habitat suitability ranges between current and future climate
change scenarios.

Striga suitability range

Area coverage Change

Current (km2) RCP 2.6 (km2) RCP 8.5 (km2) RCP 2.6, % change RCP 8.5, % change

Very low (0–0.2) 7824 6829 6006 �13 �23

Low (0.2–0.4) 2560 3388 3540 +32 +38

Moderate (0.4–0.6) 1684 1640 1962 �3 +17

High (0.6–0.8) 3278 3149 2892 �4 �12

Very high (0.8–1) 1767 2106 2712 +19 +53
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Overall, our study provides a predictive model for Striga her-

monthica habitat suitability and distribution, which could be utilised by

policymakers for developing Striga early warning systems and man-

agement strategies. Furthermore, the outcome of the present study

proves that it is possible to use ENM tools in identifying habitat

niches of Striga in a spatial space at a landscape scale. Mapping hot-

spot areas that are currently infested by Striga and then predicting

habitats that are suitable for future Striga infestation can help in

directing the limited management resources to the most vulnerable

hotspots and in effectively identifying appropriate management strat-

egies. If Striga distribution maps were to be incorporated together

with crop productivity factors like soil fertility, policymaking for food

and nutrition security could be considerably enhanced. The distribu-

tion maps can be utilised for identifying current and future hotspot

areas, which could guide in the implementation of strategies for man-

aging Striga (Jamil et al., 2021; Midega et al., 2015).

However, our study did not establish chronological timesteps,

the rate and direction of spread of Striga into new areas, because

of the limitation of our dataset. Striga seeds can be dispersed by

various factors including floods, wind, sharing of contaminated

farm tools, livestock movement and planting of contaminated crop

seeds (Emeghebe et al., 2004). Since Striga transmission modes

such as wind and water (Mohamed et al., 2007) can be quantified,

future studies could explore Striga's dispersal ability over space and

time. The distribution of Striga in an invaded range may not reflect

its entire ecological niche, especially when the species is not in

equilibrium (Merow et al., 2016; Václavík & Meentemeyer, 2012).

Hence, there is a great need to fit models with data from both

native and invaded ranges and establish the equilibrium status of

Striga in Kenya and beyond. Furthermore, our study utilised a LULC

layer, which included a general crop class, as a predictor variable in

the Striga habitat suitability experiment. Specific crop types

(e.g., maize and sorghum) would have provided more relevant infor-

mation for understanding how much the type of land cover influ-

ences Striga habitat suitability. This aspect was not considered in

this study because of a lack of specific crop type data in Kenya. It is

suggested that future studies should include cultivated areas of the

respective host crops in predicting Striga suitable habitat and distri-

bution in the study area and across other (and neighbouring) areas

in Western Kenya such as Busia, Kakamega and Bungoma. Further-

more, predicted habitat suitability of Striga and not the host crops.

This entails that those areas where any of the other potential host

crops are grown, such as sorghum, rice and pearl millet, can be

checked against our Striga suitability maps.

5 | CONCLUSIONS

Our study identified the current Striga hermonthica risk areas and the

potential habitat suitability based on the future climate change sce-

narios. Approximately 10% (1767 km2) of the total study area is cur-

rently highly suitable for Striga hermonthica occurrence, with and an

increment in suitability of up to 53% (2712 km2) in the future. This

output confirms the hypothesis that climate change will modify the

distribution ranges of the species over wider areas, which is crucial for

understanding the dynamics of Striga under climate change scenarios.

Our results showed that the Striga invasion is likely to intensify into

areas with levels of moderate infestation.

Immediate action needs to be taken to channel intervention mea-

sures for managing the spread and intensity of Striga in these regions.

These Striga distribution maps facilitate making precise interventions

at scale, which could be achieved through identifying and using fit -for

-purpose farming systems that could guide the farmers to deploy

proper and sustainable Striga management systems in hotspots. Such

interventions could help to secure the food production and livelihoods

of farmers in the coming decades. Thus, using these developed spe-

cies distribution maps and climate scenarios and integrating them into

land management decision systems could help prepare policy makers,

crop protection services, extension services and farmers for current

and future infestations.
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