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Abstract: Most research projects are data driven. However, many organizations lack proper informa-
tion systems (IS) for managing data, that is, planning, collecting, analyzing, storing, archiving, and
sharing for use and re-use. Many research institutions have disparate and fragmented data that make
it difficult to uphold the FAIR (findable, accessible, interoperable, and reusable) data management
principles. At the same time, there is minimal practice of open and reproducible science. To solve
these challenges, we designed and implemented an IS architecture for research data management.
Through it, we have a centralized platform for research data management. The IS has several soft-
ware components that are configured and unified to communicate and share data. The software
components are, namely, common ontology, data management plan, data collectors, and the data
warehouse. Results show that the IS components have gained global traction, 56.3% of the total web
hits came from news users, and 259 projects had metadata (and 17 of those also had data resources).
Moreover, the IS aligned the institution’s scientific data resources to universal standards such as the
FAIR principles of data management and at the same time showcased open data, open science, and
reproducible science. Ultimately, the architecture can be adopted by other organizations to manage
research data.

Keywords: information systems; research data; data management; data engineering; software
engineering; common data model

1. Introduction

New technologies frontier toward data augmentation, data availability, digitized data
collection mechanisms (e.g., using internet of things), and improved communication chan-
nels. These ideas open the space for enabling unprecedented possibilities for informing
and transforming the globe. In the current world of data and big data (i.e., data that is of
large volume, have a variety of data types and streams with high velocity), flourishing
companies, governments, institutions, research agencies, etc., have leveraged their core
business by adapting new pathways and innovations centered around data and IS. There-
fore, organizations must embrace cutting-edge technologies and innovations to stay afloat
in this era of data revolution [1].

Kanza and Knight [2] stated that, “Behind every great research project there is great
data management”. Most research projects are data driven, and proper digital data man-
agement is one of the main pillars of a successful research project. However, even when
required by funding bodies, efficient digital data management often remains an underap-
preciated art that is overlooked in day-to-day project management activities. It is therefore
imperative to plan and set research data management strategies early in research project
works by coming up with a comprehensive data management plan that outlines how data
are collected, stored, published, and shared, while at the same time adhering to ethics, FAIR
principles of data management, reproducible, and data standards [2]. Besides these, it is
also necessary to put in place efficient and robust research data management IS and skilled
personnel to collect high-quality data that will lead to accurate analysis, data accessibility,
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sharing, and re-use of data [3]. An IS provides a mechanism for organizing information so
that an organization can achieve specific goals, such as central data management, improve
customer service, increase in profits, increase in production, etc. [4]. In essence, data
management involves collecting, annotating, and maintaining high-quality data that are fit
for a specific purpose, e.g., statistical modeling, and machine learning.

Data should also conform to the FAIR (i.e, Findable, Accessible, Interoperable, Re-
usable) data management principles. Findable—both humans and machines should easily
search and discover data; accessible—data archived in long-term public/private storage
areas can be made available; interoperable—data can be shared and consumed across dif-
ferent applications and systems. This can be made possible through the use of appropriate
metadata and standardized ontology/vocabulary; Re-usable—data are well documented,
curated, and provide rich information about the context of data creation. When re-using
data users can reference the license, access the data, and validate the results (i.e, data
reproducibility) as well as deciding to use the data in a similar or different context [5].

Data quality control checks (QCCs) are part of the broad data management practice. It
describes the degree to which a given piece of data fits a particular purpose and should
at least be accurate, timely, complete, and consistent. QCCs consume up to 80% of a
data scientist’s day-to-day work. High-quality data make it possible to provide accurate
data-driven solutions and decision-making at the right time. Generally, a good IS is a key
conduit to data management and innovation [5–8].

In the process of fulfilling its mandate to enabling people living in the tropics and
the world at large to overcome poverty, the International Center of Insect Physiology
and Ecology (icipe) has dealt with many types of data and knowledge in the domain
of insect science since its inception in the 1970s. Since then, various research programs
and projects resident at and collaborating with the institution have generated and are
still generating considerable amounts of data from diverse domain knowledge, such as
entomology, agronomy, biology, chemistry, environmental science, geography, etc. Different
forms of data are collected include laboratory/experiment notes, genomic data, household
data, field notes and journals, photographs, geo-spatial, video and audiotapes, statistical
package output files, technical reports, simulation, derived data, publications, etc. These
data are processed (using various techniques that are relevant to those fields of study and
analyzed to provide different insights and knowledge that impact humanity in diverse
ways [9].

However, most of the scientific data and processes are not digitized and centralized
for ease of management. Data are also distributed among individual scientists, projects,
and partner institutions and organizations, which makes it difficult for others (within or
outside the organization) to locate, access and possibly re-use. So far, research outputs have
mainly been in the form of books, book chapters, peer-reviewed articles, etc., but with little
attention paid to managing scientific data, processes, and outputs. Essentially, each data
item is of value in answering specific research questions, but there were no systems put in
place to make it FAIR. Nonetheless, the re-use and proper management of research data are
becoming increasingly important as donors move toward the global trend of lodging digital
public goods (DPGs) and publications in the public domain [10]. DPGs are open-source
software, open data, open standards, open AI models, and open content that conform to
privacy and other best practices and standards, international and domestic laws, and do no
harm [10,11].

To solve these challenges, this study proposes an IS that will centralize data manage-
ment. The IS tightly couples the following major software components, namely, common
ontology [12], data management plan [13], data collection tools [14–16], and the data ware-
house [17]. These coupled software and data resources are centrally accessible [18]. The
platforms are expected to manage legacy data, digitize data collection, clean and create
analytics-ready data, champion open data, showcase open science, etc. These are geared
toward supporting the icipe vision of being a global pioneer research institute in insect sci-
ence whose vision is to improve the well-being of humanity and the environment through
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innovative and applied research, impact assessment, evaluation, and sustainable capacity
building. These approaches can be adopted widely for scientific data management

2. Literature Review

This section will give a brief introduction to the research data, project life cycle and
thereafter discuss literature related to research data management.

2.1. Project Lifecycle

Research data are mainly generated by project activities. Figure 1 shows the different
stages of a data-driven project lifecycle. They are discussed below:

• Proposal development and submission: This involves doing a write-up that is normally
submitted to a donor for funding consideration. Generally, it entails outlining a
research problem, proposed methodology, budget, and resources involved.

• Project commissioning: This marks the beginning of the project after the donor accepts
and funds a research project.

• Data collection: This is the process of fetching raw facts about a research problem.
People employ digital tools to collect data (e.g., filling out digital forms on digital
platforms, such as smartphones) while others use manual processes (e.g., filling out
printed forms) when collecting data.

• Data analysis: Data are analyzed using different mathematical formulas (e.g., re-
gressions,and Bayesian analysis) to extract insights from the data. The insights
provide leads to solving the research problem and inform decision-makers and
policy formulators.

• Data archiving and sharing: The raw data, processed data, metadata data, and other
related information are stored for re-use. The data should be stored in a format that
makes it easy to access, share, and be consumed by other systems, e.g., text file, csv,
jpeg, and png.

• Project decommissioning: This marks the end of project activities. The donor is given
a report on successes and challenges.

Figure 1. Project life cycle.
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2.2. Data Management Aspects

Technological transformation has shifted data collection from traditional paper-based
methods to digital data collection. The traditional paper-based method is costly with
delayed data turnaround time, and is prone to human errors. In digital data collection,
electronic devices, such as tablets or smartphones, are embraced in collecting, organizing,
and sharing data. The digital devices enable users to collect accurate data in a faster,
more efficient, and more cost-effective way [19]. Such devices are called the internet
of things (IoT) since they are able to transmit the collected data to sink nodes in the
internet [20]. For example, smartphones have a set of in-built sensors (such as position,
motion, and GPS) that are explored to maximize the data collection experience, and fetch
accurate data [21]. However, smartphones come with limited computing (disk storage,
processing, and random access memory) capabilities that should be considered when
planning data collection.

The International Livestock Research Institute (ILRI) has a set of data management
software. Data collection is built on the open data kit, while the data warehouse is built on
the Comprehensive Knowledge Archive Network (CKAN) and Dataverse. Their data are
described with metadata and controlled vocabularies so that they are easy to discover and
interpret. Data can be exported in an open file format, such as CSV, XML, GeoTiff, etc. [22].
Due to privacy reasons, personal data are filtered out before the public domain. However,
some data are private and require authorization to access. Their data resources are licensed
under a creative commons license [23]. It is noted that some raw data should be organized
into a standard MS Excel sheet, then archived in the data warehouse. Their data comply
with the FAIR principles of data management [22]. However, it is not stated how controlled
vocabularies are managed. This research was not able to see how their software resources,
outputs and tools were interlinked [24].

Luis et al. [25] developed a service-oriented architecture for the integrated manage-
ment and analysis of multi-omics and biomedical imaging data. The Java web-based
system was structured to meet the FAIR principles of data management and metadata. This
facilitated storage and analysis of raw data and metadata from various omics, microscopy,
and biomedical imaging modalities in an integrative manner with the ability to accept
metadata queries from web-based and scientific applications. Proof-of-concept and use
cases from plant biology and clinical studies were performed. The approaches were able to
tackle the complexities and the ever-increasing volume of omics and biomedical. These
consequently allow multi-modal data management, high throughput, and the generation
of large and highly multi-dimensional datasets in life science [25].

The agricultural sector is characterized by a widespread use of different data formats,
a tight connection to specific hardware implementations, and a lack of interoperability
standards. Jacob et al. [26] addressed the potential of applying publicly available infor-
mation sources to optimize crop production in Denmark. Free and publicly available
data (polygons, satellite images, topographic maps, and orthophotos) were aggregated
using GeoNode, an open-source web-based software (i.e., data infrastructure) that allowed
information to be queried, merged with other datasets, and analyzed. GeoNode had Geo-
Explorer to provide geographical information systems (GIS) data on a web application,
GeoServer to do data management, and PostgreSQL as a database. GeoNode was con-
figured on a virtual server and could be scaled horizontally depending on demand for
increasing processing power and/or memory. Users could upload and share data using
standard formats (Shape or GeoTIFF) for central management. GeoNode has standard
protocols, such as web map services and web feature services, that enable users (including
3rd parties) to be assigned rights to access specific data items. They evaluated their data
infrastructure based on the ease with which stakeholders could access (visualize, down-
load) data that have a universal format to ensure interoperability and the ability to perform
analysis on existing data. The data infrastructure enabled them to explore high-quality,
freely available data and open possibilities for performing further analysis and improving
crop production [26].
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In the Philippines, cassava phytoplasma disease (CPD) is a major threat to cassava
farming. Irma et al. [27] built a drone-based GIS solution for detecting CPD and informing
farmers and relevant stakeholders so that they take the necessary steps to prevent the
spread of the disease. On the raw data, they studied features such as color intensity, pixel
intensity, ratio and coordinates plotting, and featured layer. The system was evaluated by
its ability to detect infected stalks of cassava with CPD [27].

Saikanth et al. [28] performed a study to comprehend how farmers in the Na-
garkurnool district of Telangana utilized the Agriculture Resources Information System
Network (AGRISNET). They randomly selected and interviewed one farmer from the
120 villages, i.e., 120 respondents. They found that 46.67% of the farmers were using the
system. From that 40.83% of checked quality of inputs information, 37.50% were interested
in obtaining government agricultural schemes information, 28.33% needed crop protection
information, 26.66 looked for market prices and 26.66% weather information. These results
informed the authors of the popular service the system provided [28].

3. The Tightly Coupled Information System for Research Data Management

So far, Section 1 gives an introduction to research data management and the challenges
faced by icipe and many other organizations. Section 2 has outlined literature related to
the project life cycle, research data, and relevant data management strategies. This section
proposes, designs, and implements a tightly coupled IS to support data management, i.e.,
the icipe research data management and archiving information system (iRDMA-IS). We
believe this study’s methodological approaches in realizing the iRDMA-IS will not only
support the icipe data management activities, but will also inform organizations facing
similar research or scientific data management challenges and can be adopted as a solution.

Figure 2 shows the proposed master IS architecture. Generally, the IS architecture
is decomposed into independent and logical software components (SCs), which have
different software specifications and architectural styles. Each SC has specific implemen-
tation details that are abstracted from each other but communicate to each other through
well-defined application programming interfaces (APIs), i.e., component-based software
engineering (CBSE). The SCs are, namely, common ontology (Section 3.2.1), data manage-
ment plan (Section 3.2.2), legacy data management (Section 3.2.3), digital data collectors
(Section 3.2.4), data warehouse (Section 3.2.5), and software version control (Section 3.2.6).
Each component was tested independently, and bugs were cleared appropriately. Each
SC has well-defined APIs that capture data or information as inputs from users or other
SCs. The APIs also act as output channels to provide (processed) information to other SCs.
Technically, each SC is a web platform hosted on a virtual machine on icipe’s Ms. Azure
virtual private network (VPN), and communication happens across the VPN cyberspace
using secure hyper-text transfer protocol (HTTP) API (i.e., REST [29] and SOAP [30].)
architectures. After interconnecting the tightly coupled SCs, we performed end-to-end
integration testing to ascertain and meet the work flow envisioned in Figure 2. Each SC is
maintained and is expected to evolve independently. In the maintenance and evolutionary
process, we monitored and documented new and deprecated functions of each SC. If an SC
is not maintainable, it can be replaced with another one in a plug-and-play fashion [31].
The selection of the SCs was guided by several factors that are described in Section 3.1. To
use any service in the iRDMA-IS, a user fills out a service request form [32], which is posted
to the systems administrator for approval and authorization.
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Figure 2. Data and software engineering pipelines.

3.1. Software Components Selection Criteria

We selected the different software components considering the following criteria:

• Open-source: The icipe research data management and archival (RDMA) policy advo-
cates for open-source software tools and prefers to go for licensed software as a last
resort; some donors assert the same directives.

• Software license: We were keen on selecting an open-source software that has a
license that would allow us to copy and install it in our VPN/local premises, inspect
the code and build upon it to meet our needs; licenses such as creative commons
attributions [33] allow all these.

• Open-source community of software engineers around the product: Around the
globe, there are many software engineers who are actively involved in extending and
developing new products on pre-existing systems. Note that configuring open-source
software components is also not a trivial task. Therefore, with a rallying community
of software developers behind a software, we were at least guaranteed of obtaining
quick responses/solutions when we needed support, and we could also re-use readily
available and tested extensions that could support our user needs.

• Reduced software development time and cost: Developing software requires time and
is quite costly. Ideally, ready-to-use open-source components with an open-source
license reduce software development time and cost.

• Reliability: We selected components that were fully developed and tested. We also
considered components that were pre-configured with security mechanisms to secure
their APIs and abstracted layers.

• Plug-and-play, API, and replacement. The proposed master data infrastructure
pipelines in Figure 2 were designed to have SCs that can be removed and replaced
with efficient ones in a plug-and-play fashion. SCs with robust APIs guarantee com-
munication between themselves.

• Maintenance and security: We selected SCs that are actively maintained by vendors
who release regular updated SCs, which are efficient, stable, and secure. However, in
the future, we will upgrade SCs after a thorough analysis to ascertain that the new
functions are coherent with existing SCs and the intended user specifications and
software functions.

• Software documentation: Most SCs come with detailed technical and user manuals.
This was a point of reference when troubleshooting, integrating the SC with others,
understanding their architecture and development.

• On-premise skills: There are quite a number of open-source software packages that pro-
vide similar functions but are written in different programming languages, e.g., [34,35].
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We, therefore, settled on software tools that matched our software engineering skillset
and ones that would not give us a steep learning curve before starting the actual con-
figuration.

3.2. Coupling the Software Components, Their Specifications and Functions

The SCs are accessible and described (a snapshot is on Figure 3) on the website,
https://dmmg.icipe.org/ (accessed on 1 September 2022). Their specific selection criteria,
user requirements, function, customization, and coupling procedures are described in this
section as follows.

Figure 3. The landing web page to icipe’s research data management and archiving infrastructure, the
iRDMAI.

https://dmmg.icipe.org/
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3.2.1. The Common Ontology

Ontology is the formal naming of data items that are representations of a domain of
knowledge. Ontologies also describe the interrelationship of the data items. Ontologies
are context-dependent projection models of reality. In computer programming, ontolo-
gies are identifiers. When retrieving data from the database when the identifiers are not
standardized, quite a number of data items were left out since identifiers are named at the
programmer’s discretion. This was a bottleneck for machines and humans. For example,
the date of birth as a data identifier could appear as DoB, date_of_birth, DateOfBirth, birth,
birth_date, etc. In the human eye, these data identifiers have a similar meaning; however,
for machines, they are all different. This made it difficult to holistically fetch certain pieces
of data for purposes of analysis.

We worked around this challenge by having the analogy that data items should be
aligned to standardized or similar vocabulary, i.e., common ontologies, in a process called
ontology alignment. Ontology alignment is the idea of formally naming similar pieces
of domain knowledge to have similar identifiers, attributes, properties, headers, or labels
and noting their interrelationships. This makes it easy for humans and machines to fetch
and share all common or similar data at once. At the same time, the data become machine
interpretable when shared across different SCs in the iRDMA-IS since they are referenced
and consumed with respect to similar identifiers.

Just like machine learning models, common ontologies are built for specific domain
knowledge, e.g., wine [36], human disease ontology [37], gene ontology [38], malaria
ontology [39], environment ontology [40], bio-collections ontology [41], etc. Most of these
common ontologies run on free-to-use licenses, e.g., creative commons. We, therefore,
did not re-invent the wheel by defining ontologies from scratch but rather re-used and
normalized the already existing ontologies and then incrementally built on them in the
domain of insect science. We note that, to the best of our knowledge, there is no ontology
in insect science. At icipe, ontologies alignment is performed by domain experts who want
to use or re-use ontologies in their data management activities. Nonetheless, for each
defined ontology, we append a standard set of metadata, e.g., identification, description,
data created, domain, created by, knowledge domain/category, and interrelationships (to
other classes or properties). We note that new ontologies are defined by domain experts,
validated, and saved in the database.

We reviewed different software that manage ontologies as per the criteria defined in
Section 3.1 and we settled on WebProtégé [42] since it has been widely used for ontology
management [43–45]. We configured and hosted it on our VPN [12]. WebProtégé allows
users to load ontologies but does not offer a function to merge them. This research merged
several ontologies (e.g., malaria ontology [39], and environment ontology [40]) so that
users could access them from one interface. This research also noted WebProtégé searching,
adding, deleting, and editing ontologies and their metadata. However, it does not provide
an export function for ontologies selected by the user. This study therefore extended the
functionality of WebProtégé to enable users to select, preview, and export ontologies of their
choice to a data dictionary. The exported standardized data dictionary can be integrated
with legacy data, data from APIs, and data collectors as discussed in Section 3.2.4. The
downloaded data dictionary can also be appended to a data management plan for proper
data planning over the life cycle of a project, as discussed in Section 3.2.2.

3.2.2. The Data Management Plan (DMP)

A DMP describes how data will be managed before and after the completion of a
project. Generally, a DMP outlines how the research project will collect, organize, analyze,
store, and share data. A DMP is an integral part of an institution that works with research
data. It assists in aligning its data with the FAIR principles of data management in the
lifecycle of a project [46–48]. In light of these, a handful of donors targeted by icipe scientists
provide a DMP template (in Microsoft Word, online forms, etc.) to be filled. The DMP is
then submitted together with the proposal. Scientists at icipe seek alternative platforms
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(e.g., [34,35]) to create DMPs. Over time, such documentation is scattered over several
platforms, making it hard to keep track of those DMPs to keep a record or even re-use them;
these are challenges facing project-based scientific research communities [46]. The same
scientists do not fully trust those platforms in the sense that someone could access and
use their work without their consent. At times, our scientists waste time looking for DMP
templates and guides for specific donors.

Researchers across the globe have tried to solve this problem in different ways. For ex-
ample, the Data Curation Center [49] configured an open-source web-based DMP platform
(from [35]) to enable UK researchers to create DMPs instead of seeking the same service
from other platforms. This can be adopted and used for use cases, e.g., engineering and
manufacturing, to manage project-based research data when adopted at early stages of a
project [46].

As per the criteria defined in Section 3.1, we reviewed various open-source DMPs and
settled on Research Data Management Organizer (RDMO) [34]. RDMO is widely used by
other organizations [46,48]. We reconfigured and hosted it on our virtual premises [13]. The
platform is dedicated to serving icipe scientists and partner institutions only. We provide
our scientists with login passwords to access the system and create DMPs.

We note that the DMP configured by the Data Curation Center [35] has DMP templates
for many donors and funding agencies. However, by default, the RDMO has no DMP
templates. We therefore had to incrementally integrate DMPs of various donors that our
scientists target, e.g., Horizon2020 [50], and Wellcome [51], which was time consuming. A
scientist then filled out a DMP template and exported it to either an editable (MS Word,
Latex, Rich Text, Open Office, etc.) or non-editable (e.g., PDF) format. The RDMO system
provides us with functions, such as snapshots (for saving various instances of a work in
progress DMP), collaboration (scientists can invite other users to work on a DMP), task
(to set milestones that should be accomplished in the DMP), user profile (to change their
authentication detail), etc. We now have the capability of centrally managing our scientists’
DMP needs.

We note that the hosted DMP [13] highly relies on the WebProtégé ontology manage-
ment platform described in Section 3.2.1. In that, if a donor’s DMP requires a scientist to
state variables that will be considered for data collection, then the scientist will log into
the common ontology, select, preview, and download the standardized variables. In the
same fashion, we tailored a DMP to suit the data needs that all scientists should fill before
submitting their proposals. This guides the data and grants the management office to plan
ahead for possible resources a project might need when awarded a grant. Moreover, where
applicable, the selected ontologies will feed into the data collection systems, which are
discussed in Section 3.2.4.

3.2.3. The Legacy Data Management

As indicated in Section 1, icipe has numerous legacy data that are generated, project
wise. Research projects are commissioned only when they are funded and decommissioned
at the end of project activities. We sampled a few decommissioned projects and analyzed
the procedures of data collection, and how the data were organized and stored. We noted
that most projects had metadata, raw data, and clean data. Some had a data dictionary
and experimentation protocol. For us to fetch legacy data from scientists in an organized
manner, we developed a standard MS Excel workbook [52] for documenting and organizing
those data. The template, shown in Figure 4, has the following worksheets: metadata,
protocol, data dictionary, raw data, and clean data.

The metadata worksheet captures the general information about the project, e.g., the
titles, description, PI, PI email, collaborators, donor, and start and end dates. The protocol
worksheet is filled with the research’s experimentation protocol, including the design of
structures for how the experiments were set up as a means by which data were collected or
the results generated. The data dictionary worksheet defines variables used to capture data
in the raw and actual worksheets. The raw and actual data are populated in the raw and



Electronics 2022, 11, 3196 10 of 21

actual data worksheets, respectively; the data headers should be defined and referenced
from [12]. Images, videos, etc., might not conform to this style but can be organized in
folders to bring out the same meaning.

Figure 4. Meta-data template MS Excel workbook.

3.2.4. The Digital Data Collectors

This study chose digital data collection compared to manually filling out paper ques-
tionnaires, which is labor intensive, prone to errors, and expensive [19]. We identified three
web-based data collection software packages using the criteria in Section 3.1. The web
versions are namely: open data kit (ODK) [15], KoBoToolbox [16] and REDCap [14]. They
are hosted in our VPN. ODK [53] and KoBotoolbox [54] have Android mobile versions
only, while REDCap has both REDCap [55] for Android and REDCap [56] for iOS. The
Android and iOS mobile applications are downloaded from Play and the App Stores and
installed on the respective Android and iOS-enabled devices. These data collectors are
meant for different research data collection needs. For instance, REDCap fits well with
longitudinal and clinical surveys. REDCap runs on a commercial license, while ODK and
KoBoToolbox are open source. KoBoToolbox is built on top of ODK and has advanced
features (e.g., export functions, and data visualization on interactive maps) compared to
ODK. Surveys for social and economic data are supported by both ODK and KoBoToolbox.
However, this study customized ODK to meet project-specific needs, while KoBoToolbox is
used institution wide.

For the data collectors, several projects can be defined. Within each project, several
forms can be defined. Within each form, several labels (questions) and controls to capture
data can be defined. Technically, the system administrator receives a form (in MS Word,
PDF, etc.) from the project PI to digitize and make it ready for digital data collection.
He/she then consults the common ontology management platform [12] where he/she will
select and download the appropriate ontologies. Then fuse them against each data capture
control on the digital form.

Depending on a question’s flow of logic, different control flows can be defined, e.g.,
conditions and skip logic. Validations can be set against each question in the form to
ensure specific rules for data items are met (e.g., numbers and emails) before a form is
saved. These are some quality control checks that can be put in place to improve data
quality. We note that standardizing data variables, i.e., ontology alignment, improved data
quality and made it easy to fetch data that has a variable name from the entire database
Mazandu et al. [43].

Moreover, all the selected digital data collectors are able to collect a wide range of types
of data, e.g., location, image, video, and audio. After the form is digitized and the PI has
reviewed and tested it, the mobile version of the respective digital data collector is installed
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on smartphones and the digital form(s) are loaded. We note that other devices, such as the
GPSMAP 64s [57], are used to capture accurate geographical positions accurately, then fed
back to the mobile data collector where applicable.

On the web version, appropriate permissions (e.g., add, view submission, edit, and
delete submission) and roles (e.g., administrator, project manager, project viewer, and data
collector) are assigned to a user against a specific form that is deployed. A deployed form
is identified by a quick response (QR) code. A QR code is made up of a two-dimensional
black and white pixel pattern; it is a two-dimensional version of the bar code [58]. A user
uses a mobile device to scan and validate the QR code. The mobile device that scans the
QR code is validated, and the form design stored on that device is ready to collect data on
the go. This improves data security.

During data collection, data are securely stored on the device. When there is an
internet connection, either through data or Wi-Fi services, the user selects the saved data
and uploads them to the server. A user can also opt to set uploads to be automatic as soon
as the form is saved and there is an internet connection. The data collector can edit or delete
data before uploading them; once uploaded, the data can only be edited or deleted from the
web version. On the web versions, data can be previewed and downloaded. KoBoToolbox
and REDCap offer more advanced (e.g., previews on interactive maps, and histograms)
and export functions (e.g., to SPSS, KML) compared to ODK. REDCap offers even more
advanced functions, e.g., data analytics, export vocabulary, and dynamic SQL.

Data can be exported from web platforms and given to users to start data analysis. The
data can be extracted programmically and pre-processed further to meet specific system
or user needs using custom extracted, transformed, and loaded (ETL) scripts. The ETL
scripts are built on the respective data collector APIs, i.e., ODK [59], KoBoToolbox [60]
and REDCap [61]. In the ETL scripts, raw data are fetched from the digital data collection
systems, transformed (i.e., various quality control checks, e.g., common ontologies, outliers,
missing values, and consistency), and loaded into the data warehouse (to be discussed in
Section 3.2.5) or exported to formats ready to be consumed by processing platforms, e.g.,
STATA. Thereafter, the data are the back up in the VPN systems for future reference since
those are the primary/raw data.

Nonetheless, our scientists wrote pieces of script to fetch data from various data
sources, for example, weather data from the Earth Resources Observation and Science Cen-
ter [62], Shuttle Radar Topography Mission [63], and pest distribution data from [64–66].
The data and metadata were fetched, re-used, and correlated with primary or secondary
data (collected from the laboratory, fieldwork activities, etc.) to discover new knowl-
edge [67–69]. It is therefore imperative that the fetched metadata are aligned with ontolo-
gies defined in the common ontology management platform (discussed in Section 3.2.1)
before they are fused with existing data in the respective data collector using through
executing inbuilt APIs in ODK [59], KoBoToolbox [61] and REDCap [60].

3.2.5. The Data Warehouse

Using the software selection criteria defined in Section 3.1, we selected, installed, and
configured the comprehensive knowledge archive network (CKAN) web-based and open-
source data warehouse system on our VPN to meet our data needs [17]. CKAN is a robust
system for data archiving and has been adopted by various institutions and governments,
such as the New South Wales State of Australia [70], United States Government [71], the
International Livestock Research Institute [72], etc.

The system has various in-built mechanisms for data archiving on the web. The
datastore stores structured data (e.g., CSV and spreadsheets) and a user can access the data
using its simple web API or queries. The filestore stores whole (unstructured data) files
(e.g., CSV, spreadsheet, image, and video) in the file system. Data in the file store cannot be
queried but can be accessed using appropriate APIs calls [73,74]. The web service gateway
interface and NGINX are used for securely running and hosting the system, Sorl and Jetty
for searching information in the system, etc. [75]. There are also free-to-use extensions built
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by third-party software engineers that enable various functions such as download counters,
connecting to an active directory for authentication, integrating geographical information
systems base maps, etc. [76].

Generally, the institution’s organogram [77] indicates that research programs are man-
aged under themes, while support units work independently but support all the themes.
The programs and support units run projects that generate data. This study customized
the default data warehouse to suit this organogram workflow. Furthermore, in order to
ensure that data are well organized in the data warehouse, this study proposed that the
system administrator be the only user who can authorize data uploading into the data ware-
house. We note that data and respective metadata (outlined in Figure 4) can be uploaded
directly or can be bundled and loaded into the data warehouse by calling appropriate
APIs [78]. Ordinarily, legacy data are uploaded directly into the data warehouse, while
closed project data in the digital data collectors are uploaded by executing appropriate APIs,
e.g., ckan.logic.action.create.package_create(), from the digital data collectors discussed
in Section 3.2.4. Due to data privacy and ethics issues, project metadata and its data can
be made public or private; the PI provides appropriate consent. Public data are licensed
under the creative commons attribution [33].

Software source codes used in processing research data, especially during the analysis
stage, are uploaded to the version control system (discussed in Section 3.2.6) and made
public or private. The links to the source codes are updated against the respective data
items in the data warehouse. Links to the respective published articles are also updated
against the data resources.

This study adopted Google Analytics to build dashboards from user activities. It
collects, summarizes, and stores various user analytics of all our web-based systems in
the iRDMAI, and we can design dashboards with different content that targets specific
user (e.g., data manager and software engineer) needs. Visualizations and dashboards are
tailored and integrated into articles to be published and reports.

We developed dashboards in Google Analytics [79] for us to understand user behavior
and activities on the data warehouse. We built dashboards using live feeds of specific
key performance indicators, e.g., count of downloaded data, number of users, and device
used to access the system (e.g., mobile phones or computers). These make us understand
different metrics and build strategies to optimize the system and support our users in a
better way. For example, a lot of downloads of a certain dataset could tell us that the dataset
could be of high quality, leading to a review and advising other users to do the same. In
essence, this is business intelligence.

The concept of open data, open science, and reproducible science is realized in the data
warehouse since people around the globe can easily access the raw data, data vocabulary,
experimentation protocol, methodological steps (e.g., scripts) in processing that data,
processed data, articles published, and any other relevant information. Consequently,
anyone can fetch the well-described data, go through the methodology, and reproduce the
same results.

Moreover, the FAIR principles of data management are also realized. That is, data
are findable through the search function, facilitated by Sorl and Jetty software. Archived
data in public mode are easily accessible on the web-based system. However, for private
data, users must request the resources; after approval, a download link is sent to the user
by email. Data are interoperable since the archived data can be downloaded in various
formats that are consumable by other applications, e.g., CSV, jpeg, tif, xls, and xlsx. The raw
and actual data are re-usable since they are archived and well described with metadata,
data vocabulary, and experimentation protocols. This makes the data understandable and
re-usable.

The concept of the common data model is also realized since data streams into the
data warehouse from the digital data collectors (discussed in Section 3.2.4) and legacy
management (discussed in Section 3.2.3). As previously discussed, the respective data
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resources were fused with common ontologies at those stages. Consequently, a user can
fetch pieces of similar or common data variables to perform a holistic analysis.

3.2.6. Version Control Systems

Considering the software selection criteria outlined in Section 3.1, we settled on
GitHub as the platform to store source codes of various software (e.g., DMP, and common
ontology) and pieces of software code. GitHub is open source and web based. The process
of saving code into a GitHub account is called commit. GitHub enables our software
engineers and scientists to collaborate when writing code. After they commit their code,
the changes made can be tracked. If the changes are not satisfactory, the user can roll back
to the previous version or roll forward if the immediate version was fine. Code stored on
another GitHub account can be forked into our account; this allows us to centralize code
that was already saved in another account. The forked source code can be modified (where
necessary) without affecting the original source code. However, the modified forked code
can be updated on the original source code by sending a pull request to the original source
code owner who pulls the modifications and merges them into the original source code.
The code can also be made public or private. Private source code is a work in progress or
needs consent to be made public. The public source code data can be re-used and referenced
appropriately [80].

3.3. Results and Discussion

We note that there are many performance metric evaluation strategies depending on
the core functions of the IS. For instance, Saikanth et al. [28] built an IS for agricultural
service delivery and evaluated it based on the number of users and specific services
they accessed. Jacob et al. [26] developed a data infrastructure that enabled agricultural
stakeholders to easily access and analyze GIS data and evaluated it based on its ease of
accessibility and interoperability. We should note that the primary goal of this research was
to design and couple platforms (i.e., iRDMA-IS) for collecting, collating, and promoting data
re-use while adhering to the FAIR principles of data management and open data/science.
Based on the data we collected from the time the software components were deployed, we
considered evaluating the iRDMA-IS based on its accessibility, interoperability, new and
returning users, the number of datasets archived, and the cumulative frequency of users
who have accessed the software components.

We will discuss results for data collectors (REDCap and ODK) and the data warehouse
from 1 August 2021 to 31 August 2022. We recently deployed the common ontology, data
management plan, and KoBoToolbox data collector; we will analyze 2 months’ results,
from 1 July 2022 to 31 August 2022. These results were automatically captured and relayed
to Google Analytics [79]. We fetched those data and built various visualizations using
Matplotlib [81].

3.3.1. Accessibility

Figures 5–7 show the geographical distribution of users globally, while Figures 8–11
show a bar graph of the percentage distribution of users against different countries. We
note that at least 259, 180, 1,334, 68, 52, and 31 people accessed the data warehouse, ODK,
REDCap, Common Ontology, DMP, and KoBoToolbox respectively, across the globe. The
Common Ontology, DMP, and KoBoToolbox have relatively few numbers since we relied
on 2 months of data. Generally, from these results, Kenya had the highest number of people
accessing the software components. icipe is based in Kenya, and a big percentage of its staff
and research activities are based there. That could be the reason why we have a higher
percentage of people accessing the systems. Nonetheless, the distribution is also dominated
by people in Europe, the United States, the United Kingdom, and East Africa. These could
be users who we partner with and collaborate with on different scientific activities. Journal
reviewers also demand access to data and methodology (e.g., computer programs, and
scripts) when reviewing scientific papers. Some of our scientists publish their data on
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the data warehouse, meaning the (international) reviewers are part of these statistics. We
see that iRDMA-IS has gained global traction, making icipe scientific data and relevant
resources available globally.

We also note that the data in the warehouse are open (but licensed under Creative
Commons Attribution [33] license) and well described with relevant metadata, such as
the name and email of the principal investigator, collaborators, the project start and end
dates, etc. Furthermore, most, if not all, datasets include a data dictionary that explains
the variables and relevant information under study. Where applicable, each dataset has
an experimental protocol attached describing how experiments were structured to fetch
data. Other relevant information, such as published papers, technical reports, etc., is also
attached. As an example, [82], out of many other projects (that encapsulate their respective
metadata and other detailed data resources) was archived in the data warehouse, meaning
anyone can access these data resources and reproduce the experiments. These articulate the
findability, accessibility, and reproducibility concepts, which are emphasized in the FAIR
principles of data management, open science, and open data. All these are realized in this
research to showcase icipe and partner organizations’ scientific data resources.

Figure 5. Data warehouse—distribution of users globally.

Figure 6. ODK—distribution of users globally.

Figure 7. REDCap—distribution of users globally.
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Figure 8. Data warehouse—percentage distribution of users by country.

Figure 9. ODK—percentage distribution of users by country.

Figure 10. REDCap—percentage distribution of users by country.

Figure 11. Cumulative distribution of users on the common ontology, DMP, and KoBoToolbox against
different countries.
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3.3.2. Web Hits, New and Returning Users

Figure 12 shows the share of the total number of web hits for the various software
components. The total number of web hits were 20,228. A total of 60%, 35%, and 4%
came from the REDCap, data warehouse, and ODK, respectively. The remaining 1% was
from common ontology, DMP, and KoBoToolbox; this is significantly low since we only
analyzed two months’ results compared to the 13 months’ results of the other software
components. We suppose REDCap had more hits since it handled more projects that require
data collection services compared to ODK. In Section 3.2.4, we noted REDCap handles
mostly clinical longitudinal studies, while ODK does social economics studies. We note
that both REDCap and ODK require authentication to access their content. In the future,
we need to distinguish between web hits on the index and other web pages. Nonetheless,
since REDCap handles clinical data, most likely, most of the icipe work is clinical. The data
warehouse performs the archiving of data, meaning 36% of web hits were from users who
were pursing archived data/information services.

Figure 13 illustrates new and returning visitors to the data warehouse, ODK, and
REDCap. New visitors are those who have never accessed the software component before,
while returning visitors are those who have. Google uses cookies to manage this service. We
note that the data warehouse had the highest number of new users, followed by REDCAP
and then ODK. When put together, the common ontology, DMP, and KoBoToolbox had
the highest number of returning users; this could be due to the same users (i.e., software
engineers, and data designers) who returned to access the systems, and their percentage
distribution is shown in Figure 14. The highest number of new users in the data warehouse
could have been as a result of new users who sought their data to be deposited, new journal
reviewers, new users who were interested in various data services, etc. REDCap had more
new users than ODK. In the previous paragraph, we saw REDCap handled more scientific
data than ODK since projects have a life cycle (as stated in Section 2.1), and when a new
project starts, most of the time new partners are engaged. This could have been attributed
to it having more new users than ODK. Moreover, the data warehouse, REDCap and ODK
had 7,143, 12,110, and 824 web hits, respectively. Cumulatively, the common ontology,
DMP, and KoBoToolbox had a total of 151 web hits. From these, 56.3% were new users.
Since projects have a life cycle and new users (partners, donors, etc.) come on board, so do
new journal reviewers, etc. The 56.3% could indicate to us that science at icipe is vibrant.

Figure 12. Percentage web hits of the various software components.



Electronics 2022, 11, 3196 17 of 21

Figure 13. New and returning users on the various software components.

Figure 14. Common ontology, DMP, and KoBoToolbox against web hits.

3.3.3. Number of Project and Respective Datasets Archived

In Section 2.1, we stated that at icipe, research projects generate scientific data. Section 3.2.5
noted that each project has standard metadata that should be captured against it, but differ-
ent datasets can be attached. As we work on uploading legacy (described in Section 3.2.3)
data, this study uploaded all projects (without data) and metadata from the year 2000
to 2020. At the moment (September, 2022), as shown in Figure 15, we have a total of
259 projects and their metadata uploaded. From there, 17 projects have their respective
datasets uploaded for the years 2020 and 2021. However, the icipe RDMA policy should be
reinforced so that legacy data are collected, organized, and archived on the data warehouse
so that the institution’s scientific memory is reconstructed and centrally managed.

Figure 15. Data warehouse—projects with datasets populated.

3.3.4. Interoperability

For data to be interoperable, universal data formats for sharing data should be adopted.
Sections 2.1 and 3.2.5 stated that most, if not all, scientists share their data with the public
after they have exhausted their scientific investigations. It is at that point that the data
(DPGs) are archived at the data warehouse for public access. The warehouse has some of
its data stored in files with the following extensions: html, xls, doc, csv, tif, dbase, shp, shx,
and asc. That means data shared with the public can be consumed by other applications
and made reusable. Once again, these concepts of interoperability and reusability are
emphasized in the FAIR principles of data management.
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4. Conclusions

For more than 50 years of existence, icipe has never had a central data management
system to handle the tons of data that it generates from various scientific research activities
in entomology and related domains. Besides archiving digital data for re-use, fetching
and holistic data analysis were also challenges. This study designed and implemented an
information system to digitally collect, collate, and archive scientific data. Independent
software components were selected, configured, interconnected, and installed in the in-
stitution’s Ms. Azure’s virtual private network. The coupled software formed the icipe
research data management and archiving information system (iRDMA-IS). The information
system emulates the common data model, where common ontologies are defined to align
data variables in a system. In this case, data items in the data management plan, digital
data collection tools, legacy data management, and the data warehouse were aligned with
common variables to enable wholesome referencing and fetching of data. To request a
service, users fill out a service request form and post it to the systems administrator, who
initiates an appropriate support service. Generally, iRDMA-IS manages raw data, stan-
dardized data vocabulary, stores experimentation protocols, methodological processing
procedures (e.g., scripts), actual data, links to published reports and articles, etc. At the
data warehouse, data resources are set to public, if not private, to ensure data privacy,
ethics, and security. Data can be public or private, but the principal investigator provides
appropriate consent depending on the privacy, security, and ethical issues. From these,
concepts of knowledge management, open science, open data, and reproducible science are
realized. The iRDMAI-IS is currently used by the icipe scientific community and partner
organizations. To the best of our knowledge, there is no such elaborate information system
for research data management. The system is intended to revolutionize and digitize data
management across the institution and act as a reference point for research data manage-
ment. Generally, iRDMA-IS positions icipe and partner institutions in the global space
of research institutions that practice the FAIR principles of data management, open data,
open science, and reproducible science. These studies can inform institutions that face
similar challenges.

5. Way Forward and Perspectives

In this study, we note that it is necessary to have a working area where users can be
given rights to access specific datasets. In the future, we intend to integrate a data lake,
which will sit between the digital data collectors and the data warehouse. On it, data will
stream in from the digital data collectors. Users will then be assigned various permissions
to do data analysis collaboratively. After they have exhausted their scientific activities, the
data will be sent to the data warehouse for archiving.

Currently, the performance of our research activities is not tracked and monitored by
well-established data-inspired learning mechanisms to elucidate their success or failure
with possible recommendations. In future, we plan to create a “situation room” where the
institution’s research work will be captured, mapped, and visualized using graphs and
numbers for purposes of strategic planning and decision making.

Most of the data we collect and feed into RDMA-IS come from farmers, and the scien-
tific tools we develop should benefit them. However, we do not have a system to monitor,
evaluate, and learn systematic pathways of bringing together multiple partners and, at the
same time, enable them to access different technologies introduced to farmers, evaluate
their impact, and track their adoption. Based on the lessons learned, we will be strategic
in pushing forward adaptation, replication, and possibly up-scaling applied knowledge
and technologies. In other words, we would like to establish a mega data, information,
and knowledge management platform with features for scaling-up technologies, mapping
beneficiaries, and monitoring their adoption.
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